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Direct Measurement of Built-in Electrical Potential in Photovoltaic Devices by Scanning Kelvin 
Probe Microscopy 

C.-S. Jiang, H. R. Moutinho, F.S. Hasoon,  H.A. Al-Thani, D. J. Friedman, J. F. Geisz, Q. Wang, M.J. Romero,   
and M. M. Al-Jassim 

National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401
 

ABSTRACT 
We report on direct measurements of the built-in 

electrical potential in Cu(In,Ga)Se2, GaInP2 single-junction, 
and GaInP2/GaAs tandem-junction solar cells, by using 
scanning Kelvin probe microscopy.  Potential profiles on 
cross sections of the devices were measured quantitatively 
and spatially resolved in open and short circuit, under and 
without illuminations, with selective photon energies 
matching the band gaps of the junctions. The measurements 
provide valuable information about the electrical properties 
of the devices and are useful for understanding the 
performance and improving the design of solar cells. 

 
1. Introduction 

The built-in electric potential plays a major role in 
photovoltaic devices, because it collects photo-excited 
carriers and is a key factor in determining the open-circuit 
voltage (Voc) of the device. However, characterization of the 
built-in potentials has been limited to indirect ways, such as 
current-voltage (I-V) and capacitance-voltage (C-V) 
measurements. Based on the complexity of modern solar 
cell devices with multiple interfaces, indirect measurement 
is inadequate to allocate the p-n junction positions and 
cannot distinguish contributions from the multiple layers of 
the devices. A direct measurement of the built-in potential 
with spatially resolved capabilities is highly desirable for 
understanding the performance and improving design of 
solar cells. 

In the last decade, nano-electrical property measurements 
based on the atomic force microscopy (AFM) technique, 
such as scanning Kelvin probe microscopy (SKPM) and 
scanning capacitance microscopy (SCM), have been 
developed and applied to the characterization of 
semiconductor devices. Recently, we have applied SKPM 
and SCM to the characterization of photovoltaic devices. 
We measured the potential distributions on cross sections of 
thin-film solar cells of Cu(In,Ca)Se2 (CIGS), amorphous-Si, 
and epitaxial III-V cells of GaInP2, GaNPAs, and 
GaInP2/GaAs [1-3]. In this paper, we will report briefly on 
the measurement technique and on potential measurements 
for three examples of CIGS, GaInP2 single-junction, and 
GaInP2/GaAs tandem-junction cells. 

 
2. Measurement Technique 

We used the SKPM technique (Fig. 1) and quantitatively 
measured the distribution of the electrochemical potential on 
cross sections of solar cell devices. In addition to the atomic 
force between the AFM tip and the sample surface, which 
gives a two-dimensional topographic image of the surface, 
there is a Coulomb interaction between the tip and the 
sample. To enhance the Coulomb interaction, an ac voltage 
is applied to the tip. The Coulomb force can be described as: 

 
 
                                 
 
                          

 
where C, Vtip, Vs, and Vac are the capacitance between the tip 
and the sample, the electrochemical potentials of the tip and 
the sample surface, and the amplitude of the ac voltage, 
respectively. Using a lock-in-amplifier, the second term in 
the equation, F1, is detected. The signal is sent to a negative 
feedback loop, and an instant dc voltage proportional to the 
force F1 is summed to the tip. By the negative feedback Vtip 
is always adjusted to be equal to Vs, and the force F1 is 
nullified. In this way, the electrochemical potential and the 
topography of the sample are imaged simultaneously. 

For the III-V devices, atomically flat (110) cross-sectional 
surfaces were obtained by cleaving the (001) wafer along 
the ]011[  direction in air. To get flat cross sections of CIGS 
devices, which is necessary to avoid the convolution of 
topographic roughness to the SKPM signal, we grew the 
device structure on a Mo-coated GaAs(001) wafer instead of 
soda lime silicate glass. When we incorporated Na using a 
NaF source during the growth of the CIGS film, I-V 
characterization showed identical properties to the devices 
grown on the glass substrates. The potential was measured 
under conditions of open circuit (OC) or short circuit (SC). 
To measure the photo-response of the potential, a halogen 
lamp is irradiated at the front surface of the device. We used 
glass filters with either high- or low-wavelength passes to 
match the photon energy to the band gaps of the solar cells. 
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Figure 1. Schematic of the SKPM measurement system on 
cross sections of solar cell devices. 
 
3. CIGS Solar Cells 

Figure 2(a) shows an AFM image of the cross-sectional 
surface of the CIGS device. The CIGS film appears to 
consist of large grains, in contrast to the CdS/ZnO region. 
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This difference in grain size reveals a boundary between the 
CIGS and CdS/ZnO regions. However, the boundary 
between the CdS and ZnO layers is not discernible from the 
topographic image. The corresponding SKPM image taken 
in a reverse-bias voltage of Vb=1 V [Fig. 2(b)] shows a 
boundary of contrast that is consistent with the boundary 
shape of CIGS/CdS [Fig. 2(a)]. To reveal the SKPM and 
AFM features in detail, example line profiles along the same 
line scan, as indicated in both images, are shown in Fig. 
2(c). From the AFM profile, we determined the location of 
the CIGS/CdS interface, as indicated by the dotted circles in 
the figures. Because the external voltage is a reverse bias, 
the potential in the CdS and ZnO regions is higher than in 
the CIGS region. The potential starts to drop at the interface 
and extends to ~250 nm into the CIGS film. This 
demonstrates that a built-in electric field exists on the CIGS 
side close to the interface, and the p-n junction is located at 
a location of 0–250 nm from the interface.  

To determine the p/n boundary of the junction, we take 
the first differential of the potential profile [Fig. 2(c)]. This 
corresponds to the strength of the electric field, and the 
location of maximum electric field corresponds to the p/n 
boundary. In the present line scan, it is located  ~60 nm 
from the CIGS/CdS interface. In all the effective line scans 
that have good SKPM signal/noise levels, and in which the 
location of the GIGS/CdS interface can be determined from 
the AFM profile, the p/n boundary is located 30–80 nm 
from the CIGS/CdS interface. Also shown in Fig. 1(c) is a 
SKPM line profile taken in OC at the same line position. 
The potential profile is relatively flat over the CIGS, CdS, 
and ZnO layers. The reason that we did not probe the 
potential variation on the p-n junction in the condition of 
OC is due possibly to surface Fermi level (EF) pinning. We 
cleaved the sample and measured the SKPM in air; 
absorption of air molecules on the sample surface may cause 
the pinning of EF and neutralize the difference in the work 
function between the p and n regions. Such effects of 
surface EF pinning are widely reported and also showed up 
in our SKPM measurements on other samples. 

With an external voltage applied to the p-n junction, 
SKPM can measure the potential drop because the voltage 
does not unpin the surface EF. The “intrinsic” potential 
height in the bulk without an external voltage is slightly 

smaller than the energy band gap (1.12 eV). To make the 
potential height on the surface similar to that of the bulk in 
the “intrinsic” case without an external voltage, we applied 
the reverse-bias voltage of 1 V, and found that it reveals the 
p-n junction properly. Depletion widths of 60 nm in the n-
region and 190 nm in the p-region correspond to a doping 
level of ~2×1017 and  ~6×1016/cm3, respectively, by taking a 
dielectric constant of ε=12 and band gap of 1.12 eV. The 
bulk of the CIGS film fabricated by “three-stage co-
evaporation” is p-type. The n-type region close to the 
CIGS/CdS interface may be doped by the diffusion of Cd2+ 
during the formation of the CdS layer and post-anneals [4]. 
These Cd2+ ions would occupy Cu sites and act as donors.  
 
4. GaInP2 Single-Junction Cells 

  Figure 3 shows an AFM image and the corresponding 
SKPM image taken on cross sections of GaInP2 cells in OC. 
A potential profile, which is an average of the SKPM image 
over the lateral direction (parallel to the front surface of the 
device), is shown in Fig. 3(c). Another potential profile 
taken under SC is also shown in the figure. On both 
potential profiles in OC and SC, there are three main 
features: (1) the potentials show identical broad decreases 
(~350 mV) near the GaInP2/GaAs interface; (2) they 
increase at the p-n junction; and (3) the increase of potential 
at the p-n junction saturates near the sample front surface 
and shows a small terrace or saddle shape. The increase at 
the p-n junction is different between OC and SC. It 
increases slowly in OC and steeply in SC. 

The saturation of the potential increase seems to be 
caused by the effects of sample edge [1]. We extrapolate the 
potential profiles to calibrate the increasing amount in the 
region of the p-n junction, as shown in Fig. 3(c) by dotted 
lines. Both OC and SC are in thermal equilibrium state and 
should give identical potential profiles if there is no 
illumination on the sample. However, they show a big 
difference in the potential difference at the p-n junction, 
~250 mV for OC and ~780 mV for SC. This is because 
AFM uses a laser to probe the deflections of the cantilever, 
and illumination of the laser light on the samples cannot be 
avoided at this stage. This unintended illumination produces 
a Voc of 630 mV. 

 

Figure 2.  AFM (a) and corresponding SKPM (b) images of a CIGS solar cell taken in a reverse-bias voltage of 1 V. Example 
line scan profiles along the line indicated in (a) and (b) are shown in (c). A potential profile taken in OC is also shown in (c). 
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Figure 3. An AFM image (a) and the corresponding SKPM 
image (b) of GaInP2 solar cells taken in OC. Potential 
profiles in OC and SC are given in (c).  

 
We calculated the band diagram (Fig. 4) of the device 

bulk in thermal equilibrium state by solving Poisson’s 
equation using the finite element method. The SKPM 
measures the electrochemical potential of the sample 
surface, and it is the work function in thermal equilibrium 
state. Because the EF is constant throughout the sample, the 
work function follows the profile of the vacuum level. The 
diagram is for electrons that have a negative charge, and the 
measured potential should be compared with the mirror 
image of the vacuum level, as indicated by “Potential” in 
Fig. 4. At the interface between the GaAs substrate and the 
p+-GaInP2 back surface field (BSF) layer, there is a potential 
decrease (~330 meV) because of the offsets of both 
conduction band and valence band between the two 
materials. At the interface between the p+-GaInP2 BSF and 
the p-GaInP2 base layers, the potential increases slightly 
(~60 meV) due to the different doping levels. At the p-n 
junction, there is a big potential increase close to the value 
of the GaInP2 band gap (~1.8 eV). Finally, at the interface 
between the n-GaInP2 emitter and n-AlInP2 window layers, 
there is a discontinuity in the conduction band because of 
the band offset. Accordingly, the potential increases slightly 
at the interface. 
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Figure 4. Calculated band diagram of the GaInP2 device 
bulk in thermal equilibrium state. The dotted lines separate 
the different layers in the device structure. 

 
We will compare the diagram with the measurement in 

SC. The measurement was performed with a leak of the 
laser light, and thus not in the thermal equilibrium state. 

However, if the internal resistance of the device is small, the 
potential profile in SC should be similar to that of the 
thermal equilibrium state. The broad decrease in the 
potential [Fig. 3(c)] can be assigned to the potential drop at 
the GaAs/GaInP2 interface. We did not observe the small 
potential dip on the BSF layer (Fig. 4). This may be due to 
inadequate spatial and/or energy resolutions of the SKPM 
performed at room temperature. If the measurement cannot 
probe the small dip, the measured potential decrease would 
correspond to the potential difference between the GaAs 
substrate and the GaInP2 base layer, and the value in the 
band diagram is 330-60 = 270 meV. The difference (~80 
meV) between the measurement (~350 meV) and the 
diagram (270 meV) is associated mainly with the different 
doping levels of the base layer and the substrate (~60 meV). 
This implies that the EF on the cleaved surface is pinned at 
similar positions above the valance band maximum for the 
GaInP2 base layer and the GaAs substrate. From the 
measured potential (~350 meV), the EF pinning position of 
the p-type GaAs(110) surface (~0.88 eV below the 
conduction band minimum) [5], and the conduction band 
offset between GaInP2 and GaAs (~60 meV), we suggest 
that the surface EF position of the p-type GaInP2 material is 
at ~1.29 eV below the conduction band minimum. The 
increase in potential at the p-n junction is much smaller than 
that in the band diagram. This is also due possibly to the 
surface EF pinning. Surface EF may be pinned at different 
energy locations between n- and p-type materials due to 
electron- or hole-trap-like surface states. From the potential 
measurement (~0.78 eV) and the surface EF position of the 
p-type material, the surface EF for n-type GaInP2 is pinned 
at ~0.51 eV below the conduction band minimum.  

 
5. GaInP2/GaAs Tandem Cells 

Figure 5 shows the device structure of the GaInP2/GaAs 
tandem cell, an AFM image [Fig. 5(a)], and the 
corresponding SKPM image taken in SC [Fig. 5(b)]. For the 
potential profiles [Fig. 5(c)] taken in SC and OC, the 
potential shows broad decreases near the p-n junction of the 
bottom cell and the tunneling junction. The decrease in OC 
(~800 mV) is slightly deeper than in SC (~700 meV). 
Around the top p-n junction, the potential increases steeply 
in SC and slowly in OC, similar to the case of the GaInP2 
single-junction cell. Under SC, if we illuminate the sample 
from the front surface of the device using a short-pass filter 
that cuts off light with photon energies smaller than the 
band gap of the top cell, the shape of the potential profile 
changes dramatically even at a small light intensity of 
Itop=0.32 mW/cm2 [see Fig. 5(c)]. The broad decrease 
around the bottom junction becomes a peak, and the steep 
increase at the top junction becomes flat. In the case of the 
single-junction cell, the shape of the potential profile did not 
change significantly in SC when a light was irradiated on 
the sample. However, in the tandem cell, which is 
essentially two serially connected diodes, the profile of the 
potential changes dramatically. 

If the light from the halogen lamp is absorbed by the top 
cell, the minority carriers in the p-layer of the top cell 
(electrons) are excited and drift through the top p-n junction 
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and the front and back contacts of the device to the p-layer 
of the bottom cell, and the majority carriers of the top p-
layer (holes) drift to the n-layer of the bottom cell through 
the tunneling junction. The electrons (holes) from the top 
cell combined with majority-carrier holes (electrons) in the 
p (n) layer of the bottom cell, and more dopant ions with 
negative (positive) charges on the p (n) layer of the bottom 
junction widen the depletion region of the p-n junction. If no 
photons, or fewer photons than are absorbed by the top cell, 
are absorbed in the bottom cell, the extra charges 
accumulated on the bottom junction cannot be carried 
through the bottom junction, and the accumulation of charge 
exerts a reverse-bias voltage on the bottom cell. This raises 
the potential in the bottom junction and induces the 
potential peak together with the potential decrease in the 
tunneling junction. The potential increase in the bottom 
junction is compensated by the flattening of the top-junction 
potential, which is induced by the drift of photo-excited 
carriers in the junction. Because the carrier flow is blocked 
in the bottom junction, the peak position of the profile may 
correspond to the boundary between the bottom and 
tunneling junctions, shown by the horizontal line in Fig. 5. 
In this way, we were able to determine the structure 
dimensions of the device.  

 

 
Figure 5. An AFM image (a), the corresponding SKPM 
image in SC (b), and potential profiles (c) taken on  a 
GaInP2/GaAs tandem cell. Potential profile taken in SC with 
an illumination of 0.32 mW/cm2 is also shown in (c).  

 
In the band diagram (Fig. 6) of the bulk at the thermal 

equilibrium state, the potential increase on the bottom 
junction is close to the p-layer’s band gap (GaAs, ~1.42 
eV). The potential decrease (1.56 eV) in the tunneling 
junction is slightly larger than the GaAs band gap because 
of the conduction band offset (0.14 eV) between GaAs and 
the disordered GaInP2 BSF layer of the top cell. On the BSF 
layer, the potential shows a small dip (60 meV) that is like 
the case of GaInP2 single-junction cell. The band diagram 
from the BSF to the top window layer is identical to the case 
of the single-junction cell. In the band diagram, the potential 
shows a saddle shape around the bottom and the tunneling 
junction that is ~0.2 µm in width and ~1.4 eV in height. 
However, we measured a decrease of potential in this 
region. The reason is possibly related to the flattening of the 
bottom p-n junction that is caused by the laser light. Leak of 
the laser light irradiates on the cross sections of the sample. 
Because the band gap of the bottom junction is smaller than 
that of the top junction, the absorption coefficient of the 

bottom junction at the laser wavelength can be larger than 
for the top cell. This induces the flattening on the bottom 
cell and the charge accumulation on the top cell, in contrast 
to the intentional illumination with photon energies greater 
than the band gap of top cell. The flattening of the bottom 
cell makes the decrease of the potential (~700 mV) steeper 
than that of the device/substrate interface of the GaInP2 
single-junction cell (~350 meV, see Fig. 3). The charge 
accumulation on the top junction makes the increase (~1.30 
V) steeper than that of the single-junction cell (~0.78 eV).  
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Figure 6. Calculated band diagram of a GaInP2/GaAs 
tandem cell bulk in thermal equilibrium state.  
 
6. Summary 

We have applied SKPM to the characterization of 
photovoltaic devices, and have obtained useful information 
about the electrical properties of the devices. From the 
potential measurement for CIGS, the p-n junction is 
suggested to be a buried homojunction, located 30-80 nm 
from the CIGS/CdS interface in the CIGS film. For the 
GaInP2 cell, the two potential features observed were 
assigned to the p-n junction and the potential barrier at the 
interface between the GaInP2 base layer and the GaAs 
substrate. The potential on the p-n junction is photoactive, 
and that on the GaInP2/GaAs interface is photo inactive. For 
the GaInP2/GaAs tandem cell, when the sample was in SC, 
the potential distribution is unbalanced between the top and 
bottom junctions. If more (fewer) photons are absorbed by 
the top cell than the bottom cell, p-n junction flattening 
happened on the top (bottom) cell and the charge 
accumulations happened on the bottom (top) cell. 

This work is supported by the U.S. Department of Energy 
under contract number DE-AC36-99GO10337  
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